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ABSTRACT

Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy..    This 

model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to 

be valid for a fully turbulent flow domain.   Here unsteady turbulent behavior is modeled via a sinusoidal 

pulsatile approach.   While the individual modes of the turbulent flow fluctuation behavior are rather 

crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square 

(RMS) velocity fluctuations.  RMS pressure fluctuations and spectra are of particular interest and are 

estimated via the pressure Poisson expression.   Both RMS and Power Spectral Density (PSD), i.e. spectra 

are developed.   Comparison with available measurements suggests reasonable agreement.   An additional 

fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with 

measurement.
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NOMENCLATURE

Symbols

a Dimensionless model constant

B Inner aw constant B=5

c Locally defined constant

Cf Skin friction 2

2
U

C w
f 




Cf_0 Undisturbed free-stream skin friction

Ci Cosine integral special function

f Separation solution function pressure Poisson

GM Geometric average

I  Turbulence intensity (absolute value)

K Clauser turbulent viscosity constant

k Wave number

k0 dimensionless wave number kk 0

L Streamwise length scale

M Free-stream Mach number

p’ Pressure fluctuation amplitude

R Correlation function

Re Reynolds number
Rex Streamwise flat plate Reynolds number

Reθ Momentum thickness Reynolds number

Si Sine integral special function

t time

T Period time scale

u Streamwise turbulent mean flow

U Free stream turbulent mean flow velocity

U’ Unsteady turbulent mean flow velocity

U+ Inner law velocity free stream U/v*

u’ Root Mean Square (RMS) streamwise velocity fluctuation amplitude
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u+ Inner law velocity u/v*

v’ Root Mean Square (RMS) cross-stream velocity fluctuation amplitude

v* Friction velocity  

 wv *

x Streamwise spatial coordinate

x* x/δ

y Cross-stream spatial coordinate

y* y/δ

y+ Cross-stream inner law length scale 
w

yvy


*



Greek

α0 Cross-stream velocity closure weighting; 2< α0<4

δ Boundary layer thickness

δ+ Boundary layer thickness inner law length scale 
w

v



*



ΔU Pulsatile flow streamwise velocity amplitude

η Pulsatile flow similarity independent variable: 
eff

y

 

κ Von Karman constant κ=0.41

Pulsatile flow modified Von Karman constant~

ν Kinematic viscosity

ω Frequency

ω0 Dimensionless frequency 
U
 0

Φ Power Spectral Density, i.e. spectra

ρ Density

τ Shear stress

τ Auto-correlation time separation

θ Momentum thickness
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Subscripts/Superscripts

eff Turbulent effective

inc Incompressible

FT Fully Turbulent

max Maximum

os Laminar-turbulent pressure “over-shoot”

pp Pressure PSD

rms Root Mean Square (RMS)

s Steady

turb Turbulent

t, tran Transition

vehicle Reentry vehicle

w Wall

∞ Steady free-stream constant
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I. INTRODUCTION 

Vibratory loading of structures due to fluid turbulence excitation is a classical problem in fluid-structure 

interaction, Naudascher (1994) and Elishakoff, I (1983). Flow passage over structures, vehicle and other 

bodies, induce not only large scale, e.g. lift and drag effects, but small scale,  unsteady, high frequency 

input that contribute to structural vibration.  Physics based prediction of structure response requires 

concurrent estimation of high frequency (usually stochastic) velocity and pressure fluctuation behavior, 

i.e. turbulent fluctuations.   It is possible to compute flow behavior directly from the Navier-Stokes 

equations without modeling in the very computationally intensive procedure termed “direct Numerical 

Simulation” DNS.  Unfortunately, the number of floating point computations for DNS scales as Re3 

(Reynolds number cubed) Hoffman and Johnson (2006)  suggesting that practical computations remain 

out of the reach for engineering simulation even for the current “petaflop” computers.  Large Eddy 

Simulation, LES provides an alternative, but requires significant modeling at precisely the scale of 

interest You and Moin, P. (2007).  Thus, modelling based efforts to predict turbulent velocity and 

pressure fluctuation are of great interest.

This paper discusses the formulation and approximate solution for wall bounded shear turbulent 

fluctuation quantities such as RMS velocity and pressure fluctuation using a sinusoidal pulsatile 

approach. This model follows as an extension to the turbulent laminar sublayer model developed by 

Sternberg (1962) to be valid for a fully turbulent flow domain. Though a single dominant individual mode 

of the turbulent flow fluctuation behavior is modeled, the approach yields plausible estimates for Root 

Mean Square (RMS) velocity and pressure fluctuations.  RMS pressure fluctuations and spectra are of 

particular interest and are estimated via the pressure Poisson expression.   Both RMS and Power Spectral 

Density (PSD), i.e. spectra are developed.   Comparison with available measurements suggests reasonable 

agreement.   An additional fluctuating quantity, i.e. RMS wall shear fluctuation is present in all wall 

bounded turbulent flows.   However, to this point, this loading effect has been ignored as a loading input 

for reentry vehicles.   To gain a sense of the relative importance of this input we the RMS wall shear 

fluctuation behavior.   The models developed achieve reasonable agreement with measurement.
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II. ANALYSIS/RESULTS

A. Pulsatile Flow/Velocity Fluctuation

The outer portion of the boundary layer is described by a fluctuation of the form

(Arpaci and Larson (1984)).   This expression provides an estimate for )1)(cos(),('


 ytkxUtxU 

the pressure fluctuation via:

     (1)
x
p

x
UU

t
U










 '1'''



The form of this expression suggests that  and .   We )(' UO
t

U



  ))(('' 2

2

dx
dykUO

x
UU 







now propose that:   suggesting that we can initially ignore the convective term 


 Uk
dx
dyU 2

relative to the time dependent term.

We are interested in a near wall model and will construct expressions that local law of the wall profiles.   

Let’s then consider the outer-law dominated unsteady flow:

     (2)





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



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
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

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'''
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
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

where νw is the wall kinematic viscosity.   Notice, that consistent with time averaged/steady models we 

have made the traditional approximation that convective terms are negligible very near the wall (log-

layer).

To solve equation (2) we propose that a solution takes the form:

(3)
w

yatkxfytkxUu




 



  ;)cos()()1)(cos('
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Substitution of this expression into equation (3) yields an expression in terms of and )cos(  at 

.   Demanding that both the cosine and sine expressions are individually satisfied yields two )sin(  at 

linear equations for f(η) of the form:

     (4))
2
1exp(02 

 a
ff

d
dfa 

and

     (5))exp(02
2

2




affa
d

fd


Obviously, these two expressions can represent the same functional behavior by choosing “a” such that

     (6)
2
2

2
1

 aa
a

which yields .  We can thus, estimate that the (unsteady) term is now:
2
2

a

(7)
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exp()1)(cos(
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2
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2
2exp()1)(cos('

ytkxyytkxU

tkxytkxUu
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
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



Equation (7) is an estimate for streamwise velocity fluctuation.   It contains the unknown terms:

= fluctuation magnitudeU

ω = fluctuation frequency

 

The effective frequency is modeled as a velocity scale/length scale.   Consider the expression: 

and the wave number estimate:   whereby we can write:

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length
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Where .  The behavior of equation (8) mimics our concept of turbulent flow behavior since: 
w

yvy


*



.   It is convenient to place equation (8) in terms of outer variable as:0),('
2
1 2

0
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


dttyu
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(9)




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Where since using law of the wall: .   Indeed for 1 ))2(exp())(exp(
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  

a “typical” value for the skin friction say Cf=0.002 we estimate that δ+≈400.

With access to the streamwise fluctuation we need to estimate the cross-stream velocity, which follows 

from fluctuating continuity .     Using continuity we can readily write:0''



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While equation (8) is in closed form and relatively simple, formal application of equation (9) will result in 

in a rather unmanageable result.   A simpler expression which retains essential overall physics is 

preferred.   Let’s examine the streamwise derivative  and the relative magnitudes of the streamwise 
x
u

 '

variation as: .   Notice that the dominant term is associated with 
dx
dv
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dUOUO

x
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of the temporal fluctuating behavior the sine versus cosine functional behavior is rather arbitrary implying 

that an acceptable approximation for the streamwise derivative could be: .   We will discuss the 


'' u
x
u





implications of these models subsequently.

To compute the cross-stream fluctuation we need to then integrate with respect to “y.”  While the 
x
u

 '

integration can be formally computed, in keeping with the approximate nature of the streamwise velocity 

fluctuation we propose that a more traditional approximate scaling analysis may be useful.   For example 
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one can often (see Anderson et. al. 1984) interpret the cross stream velocity as: 

.   A similar approximation (see White 2006) takes the form: ')'('' uudy
x
uv 



  


. Which approach is appropriate?   From an order of magnitude point of view '''' *uyyudy
x
uv 

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  
they are both viable and hence an average expression might be useful.    A useful average for these two 

models is geometric average (mean) such as .  As written, the geometric average 2/1)(),( XYYXGM 

implies equal weight of both X and Y, however the generalization: is entirely )/(1)(),( babaYXYXGM 

appropriate as well.  For example, one could readily pose a model of the form:  where we ')(' 4/1* uyv 

have utilized a weighted geometric average for the cross-stream integration length scale as: .   4/113 )( y
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We note that in terms of the temporal fluctuating behavior the sine versus cosine functional behavior is 

rather arbitrary for u’ and v’ individually, but will have important consequences as we look at cross-

correlation behavior, i.e. terms like .
T

dtvu
T

vu
0

''1''

Obviously both the streamwise fluctuation u’ and the cross-stream fluctuations v’ are functions described 

by and    This functional behavior roughly describes spatial and )cos( 0
00 t

axk
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00 t
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temporal fluctuations associated with near velocity fluctuations.   The wave number variation is important 

as associated with the local continuity expression, but it is of less value in determining global fluctuation 

behavior.   Indeed we can replace the streamwise term by  and the cosine terms by 

x


Ut

and  which effectively makes the turbulent fluctuation strictly ))cos(( 00 tUk


  ))sin(( 00 tUk

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time dependent.
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B. Root Mean Square RMS Velocity Fluctuations

There is value in obtaining a root-mean-square (RMS) value for both u’ and v’.   By observing that the 

temporal behavior associated with these models is sinusoidal, the RMS value is readily obtained since for 

a function like:  the RMS value is computed as:)2cos()( 00 aftgtg  

     (12)0

1

0
0

2
0 2

2)2(cos gdtaftgg rms   

Notice that this result is insensitive to both the frequency and the phase shift a0.   Applying equation (12) 

we can write:
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We need to estimate the velocity scale .   A plausible way in which to proceed is to consider the U

Reynolds shear stress .  We can readily compute .   However, direct ''vu 
T
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T
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0
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application of expressions in equation (11) yields (perhaps unsurprisingly) since 0''1''
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

Clearly the choice associated with representation of the sinusoidal portion of the model does indeed make 

a difference.  Previously we noted that representation of v’ as was, from approximate 4/1*'' yuv 

integration point of view as plausible as equation (11).   This being the case one could estimate the 

magnitude of the Reynolds stress as: such that:rmsrms vuvu '''' 

(14)4/1*

2

***
2 )()

2
2cos()

2
2exp()1(

2
1''

yyyy
U
vu












 



15

with: .  Certainly, the representation of u’v’ strictly based upon 
2
1))((cos 00

2  tUk




provides no information, one could use a simple arithmetic ))sin(())cos(( 000 tUktUk
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average of approaches with would modify the weighting constant to be ¼ rather than ½.   Retaining this 

degree of generality by defining the weighting constant (say) α0 where 1< α0<2

  Equation (14) then can be written:
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The root mean square fluctuations can then be written as:
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Using equation (16) we can plot estimates for the streamwise velocity fluctuation and the cross-stream 

fluctuation.   We use the same parameters , Rex= 1E7 and Cf≈0.002 gives:400
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Figure 1.Comparison between simplified estimates for RMS velocity fluctuation u’/U and v’/U and 
measurement: Klebanoff (1955) using the “weighted” geometric average model for v’/U i.e.   suggesting 

improved agreement with data.  Additionally, α0=2.

An estimate for the turbulent Reynolds wall shear stress is an essential part of our 
T

dtvu
T
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model. Using the preceding estimates we readily obtain an estimate as: 
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The magnitude by definition follows from the friction velocity, but there is value in plotting against the 

Klebanoff data set who plots .   Comparing equation (18) with the Klebanoff data, i.e.  2

''
20

U
vu

2

''
20

U
vu

gives figure 3:

Figure 2. Comparison between simplified estimate for turbulent shear stress  and measurement: Klebanoff 
(1955) using the “weighted” geometric average model for v’/U

Let’s summarize what we have (and have not) accomplished.  We have achieved simplified estimates for 

the functional behavior associated with   Using a simplified extension of a time unsteady sinusoidal 

periodic/pulsatile flow analysis we have estimated expressions for fluctuating velocity with attendant 

functional behavior.   The results provide reasonable agreement with classical data sets.   We emphasize, 

that the modeling is rather crude and the arguments utilized are little more than order of magnitude 

scaling.   Nonetheless, for some applications they can provide useful insight in to flow behavior.  
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C. Pressure Fluctuation

It is often necessary to estimate the RMS wall pressure fluctuation p’rms.   We consider the Poisson 

equation pressure fluctuations (Lilley 1963) given by:
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A reasonable approximation (consistent with the Taylor hypothesis (Blake 1986)) is to conclude that 

 such that equation (19) can be written as: 
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Notice that we have included the dominant mean shear-turbulence term only and neglected the turbulent-

turbulent term.   The absolute value of the source term is employed here with the idea that . rmspp ''

The pressure Poisson equation follows from the highly simplified mean flow model with .   This )(yuu 

model follows from the time averaged flow with streamwise variation ignored.   Notice that this is a 

rather more drastic approximation that utilized to derive the RMS models.   Indeed, though we ignore, 

behavior in the initial derivation we will generalize the final result to include streamwise variation.
x
u
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Though a linear Poisson equation (19) is formally solvable in closed form the result (in terms of Green’s 

functions or eigenfunction expansions)   Rather than utilize these approaches we consider a simplified 

approach.
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y

v
y
u 1*







.   Combining terms yields: .   It will 4/1**
*

)1(' yy
dx
dv

x
v rms 


  2*4/3**0 )1(
2' v

dx
dyy

x
v

y
u rms 










be convenient to non-dimensionalize using the Reynolds number so as to write:
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with boundary conditions: .   We can roughly approximate:  (we 0)1(''
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discuss the appropriate constant) and further (assuming slow variation of δ) define the new variable: 

 whereby equation (20) becomes:

xx *

     (21)*

2*
4/3**0

02*

2

2*

2

)1(
2''

x
vyyc

y
p

x
p rmsrms 













The proposed solution approach for equation (21) is based upon a simple traditional Galerkin approach. 

(Fletcher (1984)). We propose a product solution of the form: .   Then )()(),(' **** ygxfyxp rms 

following the Galerkin method (Rayleigh-Ritz etc.) we propose a solution expression for as )( *yg
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It is convenient to approximate the frequency constant   and wave number constants  as  k

which implies that the flow problems of interest are supersonic.   We define: 12  Mk

12  M

Equation (23) is solvable in terms of a sum composed of homogeneous and particular solutions as:
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The homogeneous solution has been chosen in combination with the particular solution such that is )( *xf

non oscillatory.   It is worth noting that the potentially singular behavior associated with equation (23) can 

be mitigated by modeling the RHS in terms of:
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Integrating this expression and requiring non-oscillatory behavior yields:
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which yields similar behavior to equation (24).
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Power-law expressions for the skin friction suggest that: 1/7<a<1/5 which implies that 

     (27)2*2* 1.4'3 vpv  

For α0=1, while for α0=2 we have:

     (28)2*2* 0.6'2.4 vpv  

DeChant (2015) provides additional discussion.   Note, that here we have assumed that 

implying that M=√2112  M

The success of the model in providing reasonable estimates for the wall RMS pressure fluctuation 

suggests that the model may provide reasonable estimates for the frequency spectrum or power spectral 

density.   We start with the pressure fluctuation Poisson equation as:
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Notice that the pressure fluctuation directly “inherits” the temporal behavior from the velocity fluctuation 

as:
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where we will utilize .   Since we were able to successfully estimate p’rms we focus on the 4/1*'' yuv 

spectral functional behavior for the Φpp and compute the magnitude separately.   Indeed, to first order one 

can propose a product estimate for the behavior for p’(x,y,t) as:
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To estimate the frequency spectrum we consider the Fourier transform pair (DeChant (2014)):
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Using the transform pair i.e. equation (32) we can then estimate the frequency spectrum.

Note, however, that from Taylor’s frozen turbulence hypothesis that streamwise convective behavior is 

equivalent to temporal behavior via:    hence we need to include streamwise 

xUttxUt  *

behavior in our estimate for Φpp.   We emphasize that we can map between dimensionless time and 
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dimensionless space as needed.  The streamwise behavior for our estimate to the pressure fluctuation is 

given by equation (24) and takes the form: 
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is chosen to match equation (35) to first order.   Note, that the cosine term in the correlation expression 

can be associated with the traditional modeling approach for narrow band correlation functions (Bakewell 
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The result for both integrals is available in closed form but is complex and is most useful to simply plot 

the results.  There is value in comparing the pressure fluctuation spectra as estimated by equation (36) or 

(37) to other approaches.   As a starting point, we note, that pressure fluctuation source term 

contains unsteady information strictly through the  term.   Thus, one could simply 




















y
u

x
v'2

x
v

 '

approximate the pressure fluctuation spectrum as a scaled function of velocity fluctuation spectrum.   

Though normally used for continuous wind gust encounters, either the Dryden  
 22

2

41
121)(






 pp

or the Von Karman  velocity fluctuation spectra could be considered.
  6/112

2

)7.2(1

)7.2(
3
81

)(








 pp



24

Figure 3. Pressure fluctuation root mean spectrum (PSD) functional behavior computed using equation 
(36) , equation (37) and spectra based upon the Dryden and Von Karman continuous wind gust 

distribution.

The narrow band model for ω0=1 is characterized by a low frequency i.e.  constant 1* 
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Figure 4. Pressure fluctuation root mean spectrum (PSD) functional behavior computed using equation 
(36) and equation (37) compared to M=1.5 data set Beresh (2011) (See DeChant 2015).

Of course, there is little value in estimating spectral behavior without comparison to data.   In figure 5 we 

compare our spectral estimate to the data of Beresh et. al. (2011).   The model suggests reasonable 

agreement for low frequency behavior and (perhaps) adequate agreement for a portion of the spectrum 

with .   The high frequency behavior is not adequately modeled since the 1* 

D. Wall Shear Fluctuation

Estimates for the root mean square of the fluctuating turbulent wall shear are of particular interest.   We 

will examine two approaches: (1) estimation using Reynolds stress definition and (2) a local wall analog 

model described by Alfredsson et. al. (1988).   We can define the as: .   Using the preceding '''' vuvu 

models let’s examine estimates for RMS for this quantity as:
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The local wall analog model described by Alfredsson et. al. (1988) follows from laminar sublayer 

modeling estimates as:

     (42) 
u

uvu rms
ywallrms

'lim'' 0_ 

where both the RMS velocity fluctuation and the local mean velocity must be estimated in the viscous 

sub-layer.   Using equation (13) we estimate the near wall streamwise  RMS velocity  as:rmsu'

     (43)
w

rms
yvUyUu



*

*

2
11

2
2

2
2' 








 
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Since , while the mean velocity is simply:11




      (44)
w

yvuyu


2* 

Using these two velocity estimates and   we write:*
02 vU 

     (45)  2*
0_

'' vvu
wallrms



Which with  suggests that .0   2*
_

2'' vvu
wallrms



Experimental data for RMS wall shear datasets follows from Mathis et. al. provides a Reynolds number 

dependent expression as:

     (46)  2*
_ )ln(Re018.0298.0' vrmsw  

We can rewrite Reτ as .   For Rex=1E8 and Cf=0.005 7/62/12/1
*

Re)16.0(
2
2Re

2
2Re xff

w

CCv
  



we suggest that .   Obviously, comparison with  is rather less 48.0' _ rmsw   2*

2
2'' vvu

rms


promising.   We remark, however, that the estimates are correct to an order of magnitude.

 
III. CONCLUSIONS

This report provided the formulation and approximate solution for wall bounded shear turbulent 

fluctuation quantities such as RMS velocity and pressure fluctuation using a sinusoidal pulsatile approach 

which is an extension to the turbulent laminar sublayer model developed by Sternberg (1962) for a fully 

turbulent flow domain. Though limited to a single dominant individual mode of the turbulent flow 

fluctuation behavior is modeled, the approach provides plausible estimates for Root Mean Square (RMS) 

velocity and pressure fluctuations.  Focus was placed on pressure fluctuations and spectra which were 

estimated via the pressure Poisson expression.   Comparison with available measurements suggests 

moderate agreement for low frequency but poor agreement for the high frequency portion of the 

spectrum.   An additional fluctuating quantity, i.e. RMS wall shear fluctuation which is present in all wall 

bounded turbulent flows was modeled as well.   The model for RMS wall shear fluctuation achieved 

reasonable agreement with measurement.
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